Algebra III

Práctica 4 - Segundo cuatrimestre de 2016 Teorema de Galois

Ejercicio 1. Hallar elementos primitivos de E/\mathbb{Q} , donde E es el cuerpo de descomposición del polinomio:

i) $X^3 - 2$ ii) $(X^2 - 2)(X^2 - 3)$ iii) $X^4 - 2$ iv) $(X^4 + 1)(X^2 + 5)$

Hallar los correspondientes grupos de Galois.

Ejercicio 2. Decidir si la extensión $\mathbb{F}_p(X,Y)/\mathbb{F}_p(X^p,Y^p)$ admite un elemento primitivo y calcular el grado de la extensión.

Ejercicio 3.

- i) Probar que $Aut(K(X)/K) \simeq PGL(2,K)$.
- ii) Si $K = \mathbb{F}_p$, hallar el cardinal de G := Aut(K(X)/K).
- iii) Probar que $K(X)^G=K(Y)$ donde $Y=\frac{(X^{p^2}-X)^{p+1}}{(X^p-X)^{p^2+1}}$.
- iv) Probar que el cuerpo fijo por los mapas afines (respectivamente traslaciones) está dado por K(Y) donde $Y = (X^p - X)^{p-1}$ (respectivemente $Y = X^p - X$).

Ejercicio 4. Sea $E = \mathbb{C}(X)$ y sean $f, g \in \text{Gal}(E/\mathbb{C})$ dados por $f(X) = X^{-1}$ y $g(X) = \xi_n X$, donde $\xi_n \in \mathbb{C}$ es una raíz n-ésima primitiva de la unidad. Probar que:

- i) $f^2 = q^n = id_E \text{ y } fq = q^{-1}f.$
- ii) El subgrupo H generado por f y g es isomorfo a D_n .
- iii) $E^H = \mathbb{C}(X^n + X^{-n}).$

Ejercicio 5. Sea $E = \mathbb{Q}[\sqrt{2} + \sqrt{2}]$. Probar que E/\mathbb{Q} es normal, calcular su grupo de Galois $Gal(E/\mathbb{Q})$ y determinar todas sus subextensiones.

Ejercicio 6. Determinar todas las subextensiones del cuerpo de descomposición del polinomio $(X^2-2)(X^2-3)(X^2-5)$ sobre \mathbb{Q} .

Ejercicio 7. Determinar todas las subextensiones cuadráticas del cuerpo de descomposición de $X^4 - 2X^2 - 1$ sobre \mathbb{Q} .

Ejercicio 8. Sea $\Phi_n = m(\xi_n, \mathbb{Q})$ el *n*-ésimo polinomio ciclotómico. Sea K/\mathbb{Q} una extensión tal que Φ_n es irredubible en K[X]. Probar que $K[\xi_n]/K$ es normal de grado $\varphi(n)$ y que $Gal(K[\xi_n]/K) \cong \mathcal{U}_n$.

Ejercicio 9. Sean a y b algebraicos sobre K tales que $a^2, b^2 \in K y a, b, ab \notin K$. Caracterizar Gal(K[a,b]/K).

Ejercicio 10. Sea E/K una extensión Galois tal que $\operatorname{Gal}(E/K) \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2$ (n sumandos). Probar que existen $a_1, \ldots, a_n \in E$ tales que $E = K[a_1, \ldots, a_n]$ y $a_i^2 \in K \ \forall i$.

Ejercicio 11. Consideremos la extensión $E = \mathbb{Q}[\xi_{11}]/\mathbb{Q}$.

i) Probar que $\mathbb{Q}[\cos(\frac{2\pi}{11})]$ es la única subextensión de grado 5.

ii) Probar que hay una única subextensión de grado 2. Determinarla.

Ejercicio 12. Sea E/K una extensión Galois de grado 15. Probar que E/K tiene solo dos subextensiones propias. Calcular sus grados y ver que dichas subextensiones son normales.

Ejercicio 13. Sea E/K una extensión Galois de grado 45. Probar que si F/K es una subextensión de grado 3 de E/K, entonces es normal.

Ejercicio 14. Sea $p \in \mathbb{N}$ primo y sea E/K una extensión Galois de grado $p^n s$ con $n, s \in \mathbb{N}$ y $p \nmid s$. Probar que:

- i) E/K tiene subextensiones de grado s y todas ellas son isomorfas.
- ii) Si p > s entonces hay una única subextensión de grado s, que además, resulta ser normal.

Ejercicio 15. Sea L/K una extensión y sean E/K y F/K dos subextensiones algebraicas. Probar que EF/K es abeliana si y solo si E/K y F/K son abelianas.

Ejercicio 16. Sea E/K una extensión algebraica. Probar que existe una subextensión L/K abeliana maximal (es decir, que contiene a todas las subextensiones abelianas). ¿Cual es en el caso en que E es el cuerpo de descomposición de $X^4 + 2$ sobre \mathbb{Q} ?

Ejercicio 17. Sea $f \in \mathbb{Q}[X]$ irreducible de grado mayor o igual a 2 y con una única raíz real. Sea E el cuerpo de descomposición de f sobre \mathbb{Q} . Probar que $Gal(E/\mathbb{Q})$ no es abeliano.

Ejercicio 18. Sea K/\mathbb{Q} una extensión de Galois de grado 4 tal que $\sqrt{-3} \in K$. Caracterizar la clase de isomorfismo de $Gal(K/\mathbb{Q})$.

Ejercicio 19. Sea E el máximo cuerpo dentro de $\overline{\mathbb{Q}}$ que no contiene a $\sqrt{2}$ (¿Por qué existe tal cosa?). Probar que toda extensión finita de E es de Galois y con grupo de Galois cíclico.

Ejercicio 20. Para cada caso, calcular el grupo de Galois de los cuerpos de descomposición de f sobre \mathbb{Q} , y calcular todas las subextensiones intermedias.

- i) $f = X^4 + 7$.
- ii) $f = X^6 3$.

Ejercicio 21. Para cada uno de los polinomios del ejercicio 9 de la práctica 3, calcular el grupo de Galois, e identificarlo como un grupo conocido o bien como el producto (directo o semi-directo) de grupos conocidos. Además, en cada caso, contar cuántas extensiones de índice 2 hay.